Honokiol stimulates osteoblastogenesis by suppressing NF-κB activation.

نویسندگان

  • Masayoshi Yamaguchi
  • Jack L Arbiser
  • M Neale Weitzmann
چکیده

Magnolia officinalis, a component of Asian herbal teas, has long been employed in traditional Japanese and Chinese medicine to treat numerous maladies. Honokiol, a biphenolic compound, is now considered to be one of the major active ingredients of Magnolia extract, and is under intense investigation for its anti-angiogenic, anti-inflammatory, anti-tumor and neuroprotective properties. Biochemically, honokiol has been recognized to modulate the nuclear factor κ B (NF-κB) signal transduction pathway suggesting that it possesses anti-inflammatory properties. Inflammation is intimately associated with bone turnover and skeletal deterioration and consequently, anti-inflammatory drugs may hold significant promise as bone protective agents to stem bone loss in osteoporotic conditions. We and others have demonstrated that suppression of NF-κB blunts osteoclastic bone resorption, but promotes osteoblastic bone formation. Indeed previous studies have demonstrated the anti-osteoclastogenic effects of honokiol, however, activities on osteoblast differentiation and activity have yet to be investigated. In this study, we show that honokiol is a potent inducer of in vitro osteoblast differentiation by virtue of its capacity to suppress basal and tumor necrosis factor alpha (TNFα)-induced NF-κB activation and to alleviate the suppressive action of TNFα on bone morphogenetic protein (BMP)-2-induced Smad activation. Our data confirm that honokiol may have considerable promise as a dual anabolic/anti-catabolic agent for the amelioration of multiple osteoporotic diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Honokiol inhibits the inflammatory reaction during cerebral ischemia reperfusion by suppressing NF-κB activation and cytokine production of glial cells.

This study was designed to investigate the effects of honokiol, a neuroprotective agent, on cerebral edema in cerebral ischemia reperfusion (IR) mice and its mechanism of anti-inflammation. Honokiol (0.7-70μg/kg) significantly reduced brain water contents and decreased the exudation of Evans blue dye from brain capillaries in cerebral IR mice. Honokiol (0.1-10μM) significantly reduced the p65 s...

متن کامل

Monascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway

Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

Honokiol ameliorates endothelial dysfunction through suppression of PTX3 expression, a key mediator of IKK/IκB/NF-κB, in atherosclerotic cell model

Pentraxin 3 (PTX3) was identified as a marker of the inflammatory response and overexpressed in various tissues and cells related to cardiovascular disease. Honokiol, an active component isolated from the Chinese medicinal herb Magnolia officinalis, was shown to have a variety of pharmacological activities. In the present study, we aimed to investigate the effects of honokiol on palmitic acid (...

متن کامل

Honokiol suppresses TNF-α-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IκBα

Adhesion molecules expressed on cerebral endothelial cells (ECs) mediate leukocyte recruitment and play a significant role in cerebral inflammation. Increased levels of adhesion molecules on the EC surface induce leukocyte infiltration into inflammatory areas and are thus hallmarkers of inflammation. Honokiol, isolated from the Chinese medicinal herb Magnolia officinalis, has various pharmacolo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 28 6  شماره 

صفحات  -

تاریخ انتشار 2011